Start your data science journey with Python. Learn practical Python programming skills for basic data manipulation and analysis.

- Home
- Python Essentials for Data Analysis IToggle Dropdown
- 1.1 Getting started - Hello, World!
- 1.2 Variables
- 1.3 Data types
- 1.4 Printing
- 1.5 Lists
- 1.6 Dictionaries
- 1.7 Input function
- 1.8 Arithmetic operators
- 1.9 Comparison operators
- 1.10 Logical operators
- 1.11 Identity operators
- 1.12 Membership operators
- 1.13 Conditional statements (if-elif-else)
- 1.14 Importing modules
- 1.15 For loops
- 1.16 While loops

- Python Essentials for Data Analysis IIToggle Dropdown
- 2.1 Introduction to Functions in Python
- 2.2 Functions - Arguments
- 2.3 Functions with Return Values
- 2.4 Functions - A Fun Exercise!
- 2.5 Functions - Arbitrary Arguments (*args)
- 2.6 Functions - Arbitrary Keyword Arguments (**kwargs)
- 2.7 Recursive Functions
- 2.8 Lambda Expressions
- 2.9 Functions - More Exercises

- Data Analysis with PandasToggle Dropdown
- PD.1 Introduction to Pandas
- PD.2 Basics of Pandas
- PD.3 Finding and Describing data
- PD.4 Assigning Data
- PD.5 Manipulating Data
- PD.6 Handling Missing Data
- PD.7 Removing and adding data
- PD.8 Renaming data
- PD.9 Combining data
- PD.10 Using Pandas with other functions/mods
- PD.11 Data classification and summary
- PD.12 Data visualisation

- Data Analysis with NumPy
- NP.1 Introduction to NumPy
- NP.2 Create Arrays Using lists
- NP.3 Creating Arrays with NumPy Functions
- NP.4 Array Slicing
- NP.5 Array Reshaping
- NP.6 Math with NumPy I
- NP.7 Combining 2 arrays
- NP.8 Adding elements to arrays
- NP.9 Inserting elements into arrays
- NP.10 Deleting elements from arrays
- NP.11 Finding unique elements and sorting
- NP.12 Math with NumPy II
- NP.13 Analysing data across arrays
- NP.14 NumPy Exercises

- Learning Resources
- Contact Us

There may be various reasons to reshape arrays. One of these reasons could be when you want to add an array to another - they need to be of the same size. Recall that the shape of an array is the number of elements in each dimension.

Before reshaping arrays, we have to make sure that the existing array size can indeed match its new size. This means that a 1D array with 11 elements cannot be reshaped into 2D array with 2 rows because 11 cannot be divided by 2 (1 row will have 6 and another row will have 5 elements).

To reshape arrays, we can use the `.reshape`

.

Let's create a 3 by 3 array and reshape it into a 1 by 9 array.

Within the parentheses of `.reshape`

, specify the new row size followed by column size.

`.reshape`

has a special feature where it automatically detects the column number. This means that we do not actually have to specify a column number, we can simply just replace the column number with `-1`

.

- Last Updated: Jun 24, 2024 9:14 AM
- URL: https://libguides.ntu.edu.sg/python
- Print Page

You are expected to comply with University policies and guidelines namely, Appropriate Use of Information Resources Policy, IT Usage Policy and Social Media Policy.
Users will be personally liable for any infringement of Copyright and Licensing laws.

Unless otherwise stated, all guide content is licensed by CC BY-NC 4.0.